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1. Summary 
The objective of this Phase-I study was to demonstrate the feasibility of 

a suite of industrial CAD tools for the design of high-performance, energy- 
efficient, asynchronous VLSI circuits based on the Caltech technology. Situs 
Logic's general strategy in the EDA-tools market is to develop and commer- 
ciaUze a complete suite of CAD tools for the design of asynchronous, QDI, 
VLSI systems including synthesis, analysis, simulation, verification, at the 
logical and physical levels. 

Situs has developed a business model for the commercialization of the 
CAD tools, and has designed the prototype of the tool suite based on this 
business model and the Caltech approach. 

The market for asynchronous tools will not be at first the mainstream 
market, but rather some "early adopters" designing low-volume high-profit 
chips, for instance for defense or space applications. Inside the market seg- 
ment of asynchronous VLSI tools, the competitive advantage pursued by 
Situs is differentiation rather than cost leadership, even though the Situs 
tools will be priced significantly below equivalent tools in the mainstream 
EDA market. 

The main technical activities and developments were directed towards 
the design of a prototype tool-suite to test and demonstrate the feasibility 
of the approach. Although the design flow is not entirely automated yet— 
some steps still have to be preformed manually—the results of the effort are 
very promising: The circuits synthesized with the prototype tool are easily 
competitive with the state of the art. 

The main difficulty for an inexperienced designer of asynchronous circuits 
is at the logic-synthesis level since the absence of clock makes the logic syn- 
thesis of asynchronous circuits very different. The Situs tools will hide this 
difficulty by having the core part of the logic synthesis entirely automated. 
Another difficult part of the synthesis is the decomposition of a large original 
HDL description into a collection of modules amenable to hardware imple- 
mentation. This procedure will also be entirely automated and, combined 
with a powerful optimization step, will produce better solutions than what 
most designers can do by hand. 

The different programs of the suite will be structured so as to make 
it possible for the designers to tailor the tools to their styles, needs, and 
experiences, by carefully designing the interfaces in such a way that replacing 
one tool with another should be easy. 



Another major concern is that it doesn't do much good for the tools to 
allow designers to synthesize 95% of their design if they get stuck on the 
remaining 5%. In Phase II, the tools will be augmented with an extensive 
tool-kit that will provide standard solutions for most (if not all) the unusual 
technical problems that the tools cannot or should not solve. 

For high-level description, the Situs tools will use the language CHP, 
wich was developed and refined at Caltech over the last decade, rather than 
VHDL or Verilog. However, an alternative will be provided in the form of a 
subset of VHDL—and later the same for Verilog—that exactly implements 
the constructs of CHP. This language is called CHDL. A user designing in 
CHDL will be in the familiar environment of VHDL. The resulting code will 
be translated in CHP at little cost. Prom then on, the design flow will be 
the same. 

The general framework of the Situs tool suite has been thoroughly investi- 
gated and defined. The interfaces between tools and the declarative language 
Cast, which ties the different representations of a design together, are being 
designed in such a way as to allow the designer to customize the tools. 

The effort expended so far can be summarized as follows. At the logic- 
synthesis level, an automatic procedure exists to decompose any given CHP 
or CHDL program into a network of small components. Also, the core of the 
logic synthesis—the transformation from CHP to PRS—has been formalized. 
At the simulation level, the framework of the Situs toolset {Cast) has been 
defined and the interfaces have been delineated. A CHP simulator now ex- 
ists, and a new method for mixed-level simulation or cosimulation has been 
defined. 

At the physical-design level, a standard-cell library has been defined and 
built. The front-end of a cell generator (stackgen) has been developed, as 
well as a preliminary placer and router. An extended version of the PRS 
language, called XPRS, has been defined that contains information about 
transistor ordering and sizing. XPRS makes it possible to layout a chip 
without need to edit the layout manually. 



2. Body of Report 

2.1. MUestone/Task Status 
In this section, the status of the project is reported and compared against 

the baseline. The program is on schedule. Priority was momentarily given to 
the physical design part of the project to support the Caltech PACC program 
which is in the physical-layout phase, and to use a real design as testbed for 
the tool development. The emphasis has now returned to the logic synthesis, 
which is the most innovative part of the effort. 

The effort expended on each task is as follows. At the logic synthesis level, 
a new representation, CAST03, has been designed to tie together the different 
representations of a design and the different hierarchies used to structure a 
complex design. Also, the design of a tool implementing the DDD decompo- 
sition procedure for logic synthesis is well under way. At the physical-design 
level (the Situs back-end) the transformation from production-rule repre- 
sentation to layout is more than two-thirds automated. A new production- 
rule representation, XPRS, has been defined that contains information about 
transistor ordering and sizing. XPRS is used to generate layout. A propri- 
etary router has been developed, together with tools for cell generation and 
placement. 

CHDL, a subset of VHDL implementing the constructs of CHP, as an 
alternative high-level language has been defined and developed: Designers 
used to VHDL (or required to write in VHDL) can now use CHDL as a 
high-level language. The CHDL code is automatically translated into CHP. 

The next section gives a completed narrative of the different tasks men- 
tioned above, together with the outstanding problems, and new problem 
areas. 

3. Narrative 

3.1. Overview 

The Situs toolset consists of high-level synthesis and decomposition tools 
that manipulate high-level CHP descriptions as well as low-level tools for 
translation of production-rule sets into layout, placement, and routing. The 
Situs toolset provides several alternative paths for designers: two alternatives 
are shown in the following figure—the standard Situs solution (described in 
more detail below) and a different path, called syntax-directed compilation. 



Figure 1: The Situs Toolset 

3.2. The Situs Framework 
The biggest challenge in EDA tools is that posed by the need to naan- 

age very large designs. Every year it is the same story: designers are faced 
with designing tomorrow's systems with today's or yesterday's systems. And 
designs are getting ever larger; the day when a designer could have an en- 
tire system in his head at one time is long gone. The only reasonable way 
of handling the design process for large systems is to subdivide the process, 
both horizontally (by decomposing a large system into smaller, independent 
subsystems) and vertically (by adding more, smaller steps to the design pro- 
cess so that at each step only a limited amount of information needs to be 
in the designer's or design tool's memory). The catchword for this sort of 
horizontal/vertical decomposition is hierarchy: a design can be thought of 
as having levels of hierarchy with more and smaller pieces in each lower level 
of the hierarchy. 

The main promise of asynchronous design techniques is that they permit 
designers to think of their systems in a hierarchical sense. This is not so easy 
in clocked environments, where the ubiquitous presence of the clock breaks 
the hierarchy and makes it necessary to perform key design and analysis steps 
on a flattened representation.  Moving away from flattened representations 



and keeping all aspects of the design hierarchical is necessary to realize the 
complete potential of asynchronous design techniques. It is not surprising 
that existing design systems, which are optimized for representing clocked 
designs, are inadequate for supporting the asynchronous design revolution. 

3.2.1.    Situs's design hierarchies 

The Situs asynchronous toolset is built around a way of designing circuits 
that consists of a sequence of systematic, provably correct transformations 
that take the designer from an initial specification to a final layout geometry. 
This sequence of transformations passes through a number of representations, 
e.g., CHP, HSE, PRS, transistor netlists, and various representations of lay- 
out geometries. Situs's own tools support several transformation paths, and 
users are free to add their own, using their own tools or standard commercial 
tools from other commercial CAD vendors. This sequence of transformations 
is the entire design process: by recording the sequence of transformations, 
one records the design process, and one can use this record to audit it. For 
instance, hardware verification is the act of verifying that the representations 
at different stages in the design process are equivalent—for instance, when 
designing a microprocessor, a designer would want to check that the tran- 
sistor circuits in fact compute the logic furictions he intended, which in turn 
should implement the desired RTL, and so on. In the Situs flow, the design 
task can be subdivided into smaller design tasks or continued in a sequence of 
steps going from the first, high-level specification to the final GDS-II polygon 
representation of the layout. The design process can thus be organized as a 
design hierarchy. 

One of the basic transformations performed on a hardware specification 
is that of refinement. Refinement is the act of replacing a specification with 
an implementation, and it involves moving from a general specification to a 
specific implementation and from a high-level description to a more detailed 
description. For instance, the specification "an adder" can be refined to "an 
eight-bit adder" and further to "an eight-bit ripple-carry adder." Refinement 
is well-known from the software-engineering world, where the inheritance en- 
countered in object-oriented programming is a kind of refinement. A large 
design goes through many levels of refinement, and the relationships between 
the diflferent levels is hierarchical—perhaps the ALU is refined into something 
containing an adder and a multiplier, and after that the adder is refined sep- 
arately from the multiplier. Refinement thus induces a refinement hierarchy 
on a design. The refinement hierarchy is more specific than the design hierar- 



chy: whereas the design hierarchy simply ties together the steps taken by the 
system designer, in whatever way the system designer may have derived the 
pieces, the objects in the refinement hierarchy, such as the adders mentioned 
above, obey formal rules that enable them to be substituted for each other in 
particular ways. The objects in the design hierarchy do not necessarily obey 
such rules; or if they do, the rules may not be practically expressible: there 
is for instance no clear inheritance relationship between an ISA specification 
and the specification of an adder used to build a system satisfying the ISA 
specification. 

Modern hardware systems are very large and getting larger. It has be- 
come impossible for designers to think of a modern hardware system as a 
single circuit; there is simply too much detail. Instead, a hierarchical repre- 
sentation is usually used. For instance, a microprocessor consists of several 
execution units, an instruction-fetch unit, an instruction cache, and so on; an 
instruction-fetch unit consists of a few adders plus control circuitry, and so 
on. This hierarchy, the instantiation hierarchy, is nested many levels deep. 
The instantiation hierarchy is a concrete, essential part of the representation 
of a hardware system, and it is important for design efficiency that tools be 
able to handle it smoothly. 

3.2.2.   The CAST03 Language 

Keeping track of the three hierarchies mentioned above—design, refine- 
ment, and instantiation—is one of the main tasks of the Situs toolset. The 
part of the system that does this is called CAST (the acronym originally stood 
for "Caltech Asynchronous Synthesis Tools"). Several versions of CAST have 
already been developed, most of them at Caltech. Each one of these versions 
has represented a great advance over previous CAST systems, and they have 
been used in the design of a large family of asynchronous chips, including 
the early Caltech microprocessor and the Caltech MiniMIPS, as well as the 
still larger chips designed at Fulcrum Microsystems, Inc. However, none of 
the existing CAST systems has yet fulfilled the goal of properly tracking 
the three hierarchies. A new CAST system that will correct this deficiency, 
CAST03, is part of the Situs toolset. 

The CAST03 system is inspired by prior work in hardware-representation 
systems and notations. The main design issues in a hardware-representation 
system are convenience, efficiency, and soundness. Convenience is of course 
a major issue in a system that will be used by human designers; the kinds 
of conveniences that users want in a hardware-representation system include 



syntactic convenience (e.g., concise notation) and a high degree of param- 
eterizability. Since hardware systems are extremely complex (more so the 
closer one gets to the layout representation), efficiency is also a major issue; 
it is widely accepted by VLSI designers that their tools will only run on large, 
expensive server computers with the maximum memory installed. Finally, 
soundness is extremely important: soundness refers to the degree to which 
the design transformations can be tracked and audited and the degree to 
which different levels of specification can be verified against each other. A 
high level of soundness is necessary for the design advantages of asynchronous 
design to be maximized. It is no surprise that the three goals of convenience, 
efficiency, and soundness are generally at odds with each other. 

No existing design environment simultaneously provides the level of con- 
venience, efficiency, and soundness that asynchronous design techniques en- 
able. This makes CAST03 a key part of the Situs tool suite. CAST03 unites 
the goals by making judicious choices of features from existing design sys- 
tems, and while the features of CAST03 are inspired by a variety of existing 
design systems, both academic and industrial, no existing design environment 
can describe asynchronous circuits as gracefully as Situs's. 

3.3. The Situs Synthesis Tools 

3.3.1.   High-Level Synthesis 

The first step in the Situs design flow is process decomposition, which 
transforms sequential high-level descriptions of circuit behaviour into a sys- 
tem of communicating modules. Each module is still expressed in a high- 
level language and can be individually synthesized at lower levels. The goals 
of process decomposition are to expose concurrency and facilitate low-level 
synthesis while producing a system with an acceptable throughput but not a 
surfeit of communications. (In most QDI systems, the computation of values 
consumes significantly less energy than the communication of these values.) 

Previous approaches to automated process decomposition have been syntax- 
directed and unable to produce modules small enough to be implemented as 
the fine-grain pipeline stages (precharge half-buffers, or PCHBs) used in the 
high-performance MiniMIPS and Lutonium asynchronous microprocessors. 
The Situs tool fiow features data-driven decomposition (DDD), the first de- 
composition method to target the fast PCHB asynchronous circuit family. 
Before DDD, designers wishing to create high-throughput asynchronous sys- 
tems could spend weeks creating an energy-efficient decomposition to meet 
the desired throughput, and even after that effort, the results would vary 



greatly depending designer experience and intuition. The decision to make 
all intermediate stages in the Situs tool chain human-readable gives users 
the freedom to choose between DDD, syntax-directed decomposition, or per- 
forming the process decomposition by hand. The remainder of this section 
focuses on the algorithms and tools for DDD. 

Data-Driven Decomposition 
DDD performs data-dependency analysis on the sequential CHP and then 

decomposes the program into a system containing one module for each vari- 
able. The modules contain both the computation of the variable (encap- 
sulating all assignments to that variable in the original program) and new 
intermodule communications which read in values of other variables and send 
out the newly computed value. (External output channels that appear in the 
original sequential CHP are considered special variables and are decomposed 
into their own modules.) By considering the flow of data instead of the syn- 
tax of the original program, DDD eliminates unnecessary synchronization in 
the system. 

When this analysis and decomposition is performed in isolation, the new 
modules are not guaranteed to fit into the CHP template for PCHB cir- 
cuits. DDD decomposes any deterministic CHP program into a system of 
PCHB-implementable modules by first rewriting the sequential program so 
that every variable is assigned a value at most once during the execution of 
an iteration of the main loop. This transformation to dynamic single assign- 
ment (DSA) form may involve splitting variables into new ones, eliminating 
inner loops, and adding assignments to the ends of guarded commands (i.e., 
selection statement branches). 

After DSA conversion, data-dependency analysis and decomposition, DDD 
has created a working concurrent system where every module can be im- 
plemented by a PCHB circuit. The decomposition may have gone too far 
though—modules may be smaller than is necessary to fit the physical and per- 
formance constraints placed on the size of PCHBs. The last stage of DDD is 
therefore to cluster the DSA modules into larger modules to improve energy 
(reducing the number of communications in the "system) and performance 
(cutting forward latency while still running at the desired throughput). De- 
composition is followed by some recomposition so that the user can prioritize 
which metrics are most important in terms of the performance of the final 
system. 



Clustering is implemented in two phases. In the first phase, DSA mod- 
ules along the critical path of a system are repeatedly clustered in series 
until they are too large to implemented as single PCHB circuits. The second 
phase employs a global optimization heuristic to cluster modules in paral- 
lel while adding slack-matching buffers to keep the entire system running 
at the desired throughput. The final output is a concurrent system where 
communicating modules may implement the computations of one or multiple 
variables, or may be simple buflTers inserted to improve system performance. 
All modules fit the PCHB circuit template. 

Tools 
In Phase I, we created tools that convert deterministic CHP programs into 

DSA form, analyze the data dependencies in a DSA program and output a 
system of CHP modules equivalent to the original sequential specification. 
These tools implement the basic algorithms comprising the first three stages 
of DDD, but do not incorporate all of the features envisioned for the final 
tool. For example, input CHP cannot yet contain nested loops (which, ac- 
tually, are rare in practical circuits), and conditionality is not yet allowed 
in most intermodule communications introduced by decomposition. These 
tools have been successfully tested on various programs, including the com- 
plex Instruction Fetch program used in the Lutonium (asynchronous 8051 
microcontroller). A tool that implements the final clustering stage of DDD 
is currently in development. 

3.3.2.   The Situs Back-End: Production Rules to Layout 

The Situs toolset takes the Production Rule Set (PRS) as the boundary 
between logical and physical design; production rules are the target of the 
logical design and the specification for the physical design. The physical de- 
sign in the Situs flow is different in many ways from a traditional synchronous 
physical-design flow: many optimizations are possible at the circuit level, and 
even at the layout level, that depend on information from the logical-design 
level. For instance, facts such as "nodes x and y can never both be true at 
the same time" can be used in order to perform circuit and layout optimiza^ 
tions. A tighter integration of the tools than is seen in standard tool flows is 
therefore desirable, and the Situs physical tools provide this. 

Low-level production-rule representation: XPRS 
The physical tools start with a production-rule set. This is a purely logi- 



cal specification, and it is not sufficient for driving the physical design tools. 
In order to provide a specific enough (but not over-specific) description of 
the system, the Situs toolset uses a new representation called the Extended- 
Production-Rule Set (XPRS). This representation specifies transistor-gate 
ordering and transistor-gate widths, but it does not specify the complete cir- 
cuit topology, nor does it specify any other geometry information. The XPRS 
notation is ideal for transistor sizing and it is also ideal for human-produced 
low-level descriptions: using XPRS, a designer can specify all relevant details 
about an asynchronous circuit implementation without having to edit actual 
chip layout directly. 

The introduction of XPRS subdivides what was formerly one task (sizing, 
gate ordering, and specification of the netlist) into two tasks (sizing and gate 
ordering on the one hand and specification of the netlist on the other). This 
is in line with the Situs philosophy that each design tool be simple and 
interchangeable and that it can be overridden by human input. 

Because XPRS is used for sizing, the Situs tools convert the standard 
PRS into XPRS as the first step in the physical-design flow. This conversion 
is done in one of three ways: 

• Automatically through gate matching. 

• Automatically through XPRS generation from PRS. 

• Manually or by logical-design tools. 

The three ways are used as follows: the automatic methods are used when 
a PRS is given. First of all, gate matching is performed: the Situs system is 
able to match a given PRS against a gate library whose cells are described in 
XPRS—in this case, the presence of a cell in the gate library is taken to mean 
that the transistor-gate ordering is arbitrary, and logically equivalent cells 
are matched against the given PRS. Secondly, remaining PRS are converted 
by a special XPRS generator: this generator makes the decisions regarding 
transistor-gate ordering and gate sharing; this is the least preferred approach 
because the XPRS generator has to be conservative about its designs in order 
to guarantee that they function properly. The final method of generating 
XPRS is the simplest: the user simply specifies the gate ordering. Normally, 
however, the "user" is a higher-level tool in the Situs logical-design suite; this 
tool will have the necessary information to pick a reasonable gate ordering 
and sharing. 

10 



Placement and routing 
Placement and routing are the final steps in the physical-design flow. The 

Situs toolchain is extremely flexible with regard to cell placement. Cells 
can either be placed manually by the designer by leaving the appropriate 
directives in the CAST03 code, or the placement can be done automatically. 
If it is done automatically, special directives can still be used in order to 
perform datapath placement—the regularity of a datapath means that extra 
information is available in order to optimize the routes. The CAST03 system 
makes it easy for the designer to specify this extra information. 

Routing is performed by a proprietary Situs router. The Situs router 
routes nets one at a time, it supports rip-up-and-reroute for batch mode 
"hands-off"" routing, and it works with all standard ASIC processes. It fur- 
thermore incorporates an efficient approximate Steiner-tree router (based on 
minimum spanning trees) for routing nets that connect more than two points 
together, which is important for asynchronous circuits because it is not un- 
usual for circuit nodes fan out to several dozen transistor gates. The Situs 
router is unique in that it can easily handle hand-drawn custom layout with- 
out special directives telling it where to connect to the layout. The Situs 
router is also "opportunist" router that will connect anywhere it can on a 
net. This improves routability because the router is able to connect to the 
layout in more places than a standard router could, and more importantly, 
it makes it very easy to combine standard cells with hand-drawn layout, in 
keeping with the Situs designer-assisted compilation philosophy. 

3.4. Future Plans 

Phase I was used to design a prototype of an EDA toolset for asyn- 
chronous VLSI design based on the Caltech methodology, and to define a 
product from a business and marketing point of Adew. The toolset can al- 
ready be demonstrated on a reasonably large part of a system with excellent 
results compared to the state of the art. 

In Phase II, the prototype will be turned into an industrial-strength 
toolset. An a-version will be ready by the end of the first year for use 
by a small group of early adopters, and a ^-version by the end of Phase II. 
Situs is eager to put the tools in the hands of industrial users outside of the 
async research community as soon as possible to get feedback from them, as 
it is difficult for the developers to foresee what will be the main stumbling 
blocks for such users. 

A new transistor-sizing algorithm has been developed at Caltech, which 

11 



Situs will implement and integrate into the tool suite in Phase II. The op- 
timization metric used by the algorithm is Et^ where n can be chosen by 
the designer so as to fix the desired tradeoff between energy E and delay t. 
(Usually, n = 2.) 

The only important aspect of the design flow that has not addressed in 
Phase I is testing. Although some members of the Situs team have con- 
tributed the first results on testing of asynchronous circuits, it would be 
convenient to leave the development of a systematic testing method to an- 
other group. However, an integrated approach as the one proposed by Situs 
may require that Situs develop their own testing procedure. 

Situs will also be an early industrial user of the tools since we intend to 
be a design house as well as an EDA vendor. It has been awarded an SBIR 
Phase I contract to investigate the potential radiation-hardness advantages 
of asynchronous VLSI, which will require the design of experimental systems. 
Situs will also collaborate with Caltech, Cornell, and ISI, (and possibly other 
DoD prime contractors) inside the DARPA CLASS program. Situs will pro- 
vide the EDA tools for the project and may be a subcontractor for some of 
the designs. 

The marketing strategy will follow the well-known technology adoption 
life cycle defined for discontinuous innovations. The tools will first be offered 
to the "innovators" (or "technology enthusiasts") and the "early adopters" 
(or "visionaries")—at this point, it is difficult to differentiate the two cat- 
egories of customers. Among them will be the async startups like Fulcrum 
Microsystems, small high-technology companies like Myricom and Tensil- 
ica, who know and appreciate the technology. One may also include in this 
class some defense contractors in the DARPA community and some small 
skunkworks groups inside large corporations. Such groups exist inside Intel, 
IBM, Sun, Apple, and others. 

According to modern studies in the marketing of high technology, the 
difficult step is the next one, when we reach to the next category of customers 
called the "early majority" or "pragmatists." Situs hopes to turn the small 
insider groups within large corporations and the defense contractors into our 
early majority. In order to do so, it is necessary to have established Situs as 
the market leader in async tools by then. 

3.5. Contract Delivery Status 

On schedule. 
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3.6. Report Preparers 

The report was prepared by Alain J. Martin, PI, Mika Nystrom, and 
Catherine G. Wong. 
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